Intermediate Topics

* enum<T> { someconstants } adds someconstants to enum<T>‘s table -- can occur multiple times or in multiple modules like C++’s “namespace.” Must not have the same name declared in separate modules.

Class Declarations

Inheritance

Override

Data Storage for Class/Member Variables

* Every variable declaration in a class declaration may optionally be preceded by “shared” or “perclass.”

* In the default case (no “shared” or “perclass” prefix), the variable is called a member variable, otherwise it is called a class variable. Both qualify as members or fields of the class (along with member functions).

* “shared” variables are just like a global variable, except that the variable is in the class’ namespace. Ie. for class C and shared variable V, have global “C.V” which may be abbreviated V when in the class’ scope (e.g. when declaring a member function). These may or may not be initialized at declaration time (if no initializer is given, they will be initialized in the default way).

* “perclass” variables are stored with the type. They are like constants in that they can’t store object instances and may not be ‘set.’ They may only be queried, and may only be initialized at declaration time (to a constant which may be resolved at compile time). “perclass” variables may be declared as required by prefixing the declaration with the keyword “require,” as with member functions (below). Unlike “shared” variables, “perclass” variables (required or not) may be overridden in descendant classes (????).

* For convenience, a “perclass” and “shared” variables (class variables) may be accessed through an object. Ex:

	class C { shared var S = 10; }

	var V=C();

	Then V.S refers to V.type.S (which is C.S in this case).

* Note that even with the above, “perclass” and “shared” variables are tied to the class, not to any particular object instance.

* On the other hand, normal member variables are tied to object instances.

* You may use the “override” keyword to specify a different initializer for a normal member variable declared in some parent class.

Class/Member Function Modifiers

Function declarations in classes may be prefixed by a child modifier and/or a storage modifier.

The child modifier is always given first if both are present. The possible child modifiers are “optional”, “require”, and “final”.

* “final” means that this funciton may not be overridden in descendants. This function is a candidate for inlining if that is ever supported. Even without inlining, calls to this function may be slightly faster since they don’t have to go through as many levels of indirection.

* “optional” means that there is no implimentation for this function in this class, but some may be given in a descendant (via “override”). You are advised to test for the presence of the function in a particular object before using it:

if (obj.optionalfunc)				// is the function present

	obj.optionalfunc(param);		// if so, call it

* Note that calling an optional function in an object which does not have it will simply do nothing except return 0 (or false) if a return value is expected, and set all out parameters to 0 (or false).

* “required” means that there is no implimentation for this function in this class, but any class which descends from this class must impliment the function if objects of that class are allowed to be created. See below for more on required class members.

* Note that Optional and required functions may not have a function body in this class.

The possible storage modifiers are “shared”, “perclass”, and “bridge”.

<MORE HERE>

* Shared and bridge functions require a function body.

* Note that since shared and bridge require a function body, they can not follow “optional” or “require”.

Required member functions and perclass variables

* When a function is declared required, it may not be given a body. When a perclass variable is declared required, it may not include an initializer.

* Descendant classes may give bodies/values for required members (functions or variables) using the “override” keyword (and corresponding syntax, see above)

* Classes with required members which have not been overridden are called abstract. Otherwise, the class is called complete, ie. if it had any required members, they have been given a value via an override.

* Only complete classes may be instantiated (ie, can have their constructor called directly). Abstract classes may not be cast to a function like a complete class, since that might allow one to indirectly instantiate it. In other words, no object may be created with any class which has unimplemented required parts.

Forward Class Declarations

At times you’ll want to specify parts of the declaration of a class before you are ready to declare the body of the class. Forward class declarations are simply class declarations with some components missing, but declared later in the file. They are goverened by the following rules:�* <...>’s after a class name fix the template parameters. Later declarations must match in type, though the names for each template parameter are allowed to vary.

* (...)’s fix the (constructor) parameters (or ‘parameters to the class’).

* Must fix the template parameters before the constructor parameters. Note that this can occur either with a previous (forward) class declaration or since the <...>’s come before the (...)’s.

* Must fix constructor parameters before the class body

Multiple Inheritance Rules

* First class listed in the “extends ...” section is called the primary parent

* If no “extends ...” section is present, the primary parent is “Object.”

* The primary lineage of a class is the class along with its primary parent, and the primary parent of that, and so on up to Object.

* Every class after the first listed in the “extends ...” section is called a mix-in parent.

* Given any two classes, A and B, their common ancestor is the most specific class in common betwe
